Skip to content

Industrial & Sanitary Mixing Impellers

Mixers used in the food, beverage, dairy, chemical and pharmaceutical industries are required to mix fluids and non-Newtonian fluids, to emulsify immiscible liquids, to disperse solids or gases into liquids and to mix solids. Each operation has a specific degree of agitation necessary to obtain the desired result. It is therefore dependent upon the agitator in the mixing system, a component that typically consists of a drive assembly, a shaft and an impeller (also referred to in the process industries as a propeller, a paddle, a turbine or a hydrofoil). The impeller converts the rotational energy of the shaft into a combination of axial, radial or tangential flow, shear and turbulence. There are many designs of impellers available commercially and no one design is capable of providing optimum performance under every set of conditions in the many mixing processes being used today. Furthermore, a magic formula for selecting the optimum impeller design for a particular mixing process does not exist. However, there are several questions that one can ask when selecting an impeller:

What flow pattern is required (flow vs shear required)? What types of impeller are available and costs involved? What mixing vessel is being used and volumes being blended? What type of mixing process is involved and desired mixing results?

To readily access vessels with narrow necks, e.g., carboys, a folding mixing impeller is commercially available. This mixing impeller has two blades attached to the shaft and the blades fold together to allow installation of the agitator. Folding props, or drum bung mixer propellers are suited for 55gal drum mixing and carboys with small openings to fit the mixing impeller. For more general industrial and sanitary mixing applications the plastic or Teflon shaft and impellers are used which are very corrosion resistant and easy to clean.

The accumulation of material on the walls of the mixing tank or vessel can be a problem in some mixing processes and can reduce the efficiency of heat transfer to or from the walls. To overcome this problem, the vessel walls are continuously scraped by flexible, hinged scrapers attached to the outer edges of the blades of the impeller.

Tickler impellers are often used for low level mixing and designed to provide enough flow while draining vessels or making up very small volumes. Impellers can also be used for up-pumping in customized applications.

Materials of Construction and Sanitary Requirements

Stainless steel alloys are widely used to fabricate impellers, providing excellent resistance to corrosion and therefore minimizing contamination of the materials being processed. The concern for purity in the food, dairy, beverage and pharmaceutical industries is reflected in the demand for smooth surfaces, particularly the surfaces that contact the fluids being used. Surface smoothness can significantly reduce localized corrosion processes and the stainless steels can be smoothed by either mechanical or chemical treatments or by electropolishing. Surface scale and discoloration that appears after heat treatments can be removed by chemical treatments. For high purity requirements electropolishing not only offers the advantage of being versatile, but provides a very smooth surface that is readily passivated.

Teflon impellers are commercially available today and stainless steel shafts can easily be clad with a layer of the fluoropolymer. The hydrophobic nature of the surfaces results in less build-up of material on the impeller and shaft. Several types of stainless steel impellers can be coated with Teflon if necessary.

Mixing impellers for biotech applications often are 316Lss, welded to the shaft, polished to ‹20RA, and then passivated and electropolished. Impellers should also be self-draining and capable of being cleaned via CIP and SIP. Biopharm mixing impellers would typically be fabricated rather than cast to provide for a pit free polished finish. Material test reports on the 316Lss or material of construction are often required.

In addition to the sanitary nature of the mixing impeller, other options are available from various manufacturers. Ringuard or shroud for the impeller are used especially when mixing with bag liners in the drum. Mixing prop stabilizer or stabilizing rings are used to enhance the mechanical stability of the shaft/impeller system and help with fill up and draw down.

Careful consideration should be taken to assure the impeller provides the right flow, shear, mixing action while also being mechanically sound for mixer critical speed and bending moments.

The Design and Dimensions of the Mixing Vessel

The geometry of the mixing vessel, in terms of the aspect ratio and the shape of the bottom, should not be overlooked. Dish-bottomed vessels are preferred, although flat-bottomed or shallow cone (‹15�) can be used without particular problems. The ratio of the depth of fluid to the diameter of the vessel (the aspect ratio) should be unity or close to unity. The position of the impeller within the process fluid can also affect performance. Incorrect location of either single or multiple impellers can result in staged flow patterns and non-uniform distribution of added materials. Mixing vessels are often fitted with baffles, these being stationary elements located at or near the walls. Baffles tend to inhibit liquid swirl and therefore minimize tangential flow, allowing axial flow patterns to develop.

The dimensions of the mixing vessel must be considered when selecting the size and shape of the impeller. The ratio of the diameter of the impeller to that of the mixing vessel should range from 0.2 to 0.5, i.e., 0.2 ‹ D/T ‹ 0.5, where D is the diameter of the impeller and T is that of the vessel. The distance from the impeller to the bottom of the vessel (the clearance, C) affects the power draw and pumping efficiency of the mixer. For optimum performance the ratio C/T should range from 0.1 to 0.3, although hydrofoils operate with C/T approximately 0.5

Impeller positioning in the tank should be considered as there are a number of ways to orient the shaft/impeller to achieve the mixing results. Number of impellers is also a consideration depending on mixing volumes.

How to Specify the Mixing Impeller

Some of the information your mixing vendor will require: What is your desired mixing results. What are you mixing. Volume you are mixing. Tank dimensions. High and low liquid levels. Mixture Viscosity, SG or Density, Solids %. Impeller diameter, shaft size for bore. Mixer speed range. HP available. How secure impeller to shaft. Materials of construction and documentation required. Surface finish Polish. Coatings, electropolish, EP. Impeller style desired. A general conversation on what is desired and all the process and mechanical information for the mixing application will help a vendor provide assistance in selecting the right impeller for the job.

Get Quotes Fast Highly Rated CS GMP Applications Solution Driven Made in USA

Get Quotes Fast

Highly Rated CS

GMP Applications

Solution Driven

Made in USA

Get Quotes Fast Highly Rated CS

Get Quotes Fast

Highly Rated CS

GMP Applications Solution Driven

GMP Applications

Solution Driven

Made in USA

Made in USA

Get Quotes Fast

Get Quotes Fast

Highly Rated CS

Highly Rated CS

GMP Applications

GMP Applications

Solution Driven

Solution Driven

Made in USA

Made in USA

What Do You Know About Mixing Flow?

Understanding flow patterns is an important part of helping you choose the right impeller. The three primary types of flow patterns are described below

Axial Mixing Flow

The fluid parallel to an axis of rotation. It moves media from the top to the bottom. Axial flow impellers are used for blending, solids suspension, solids incorporation or draw down. It is most common in a low viscosity, high speed application. The most common impeller style is the propeller.

Radial Mixing Flow

The fluid is discharged radially outward to the vessel wall. Compared to axial flow impellers, radial flow impellers provide higher shear and turbulence levels with lower pumping. Radial flow draws the media from the top and bottom. They are used for liquid dispersion for low to medium viscosity fluids and high speed. The most common impeller styles are the straight blade and crossed blade.

Tangential Mixing Flow

The flow pattern seen when tangential or rotational flow dominates is a swirling of the tank contents, often with a surface vortex. It is often used when mixing high viscosity at lower speeds. The most common impeller styles are the U-shaped anchor and square blade impeller.

Mixing Processes

Mixing includes the blending of miscible liquids, the dispersion of liquids, gases and solids, the emulsification of immiscible liquids, the formation of solid suspensions, dissolution and crystallization processes, chemical reactions that are dependent upon mass transfer and heat transfer into and out of the vessel. The choice of an impeller should be determined in part by the particular mixing process. Dispersion to form slurries will require a different impeller to that required to form pastes. Crystallization processes may involve crystals that are easily fractured and require gentle agitation. Other crystals tend to form at the walls of the vessel and scrapers may be required.

Whether you are choosing a mixing impeller for scale down, scale up, R+D, or bench scale pilot, testing one should look at all the options available to choose the right impeller at the right economy for your particular project.

It is evident that the selection of an impeller for a mixing process in the food and beverage, dairy, pharmaceutical and chemical industries is not a simple matter. The impellers come in a variety of shapes and sizes and optimum performance is dependent upon several factors — the physical properties of the materials to be mixed, the type of mixing process, the mixing vessel and the generation of the correct flow, shear and turbulence. Mixing is considered by many to be an art and, without question, “hands on” experience becomes very important when selecting mixers and impellers. That experience likely resides with the manufacturers of mixing equipment and with their representatives.

carboy orbital shaker

Also available! Orbital Shakers from White Mountain Process

Our Orbital Shakers are perfect for blending buffers, proteins, chromatography slurries and a great choice for single use mixing with either carboys or single use bags.

Orbital Lab Shakers are known for their ability to provide low shear and gentle blending, to more vigorous shaking and mixing action. Shakers are heavy duty and robust, easy to use, and extremely effective at mixing very quickly and uniformly.

Orbital Shakers typical options we can provide:

  • Biopharma ready, complete documentation packages, IQ/OQ optional, FAT testing optional.
  • Heavy Duty Large Volume Mixing and Small Volume blending
  • Fixed Speed or Variable Speed / High or Low Speed
  • Variable Speed digital display with digital countdown timer
  • Temperature controlled top plate typical
  • Explosion Proof and Hazardous Duty motors available
  • Remote Control Operation available
  • All Stainless Steel Models
    Incubator High Humidity and CO2 gassed models

Request a Quote

We also offer single-use and carboy mixers for laboratory use

.For top-quality, single-use mixing systems, contact White Mountain Process. Our single use mixers are erfect for biotech, pharmaceutical mixing, medical and other aseptic mixing and blending applications. Our customers find this system to be flexible, reliable, sanitary and remarkably easy to use.

Our Single Use Mixers can mix from ½ liter to 200 liters – with a single mixer. If more is required, we’ve designed our systems to be flexible enough to mix up to 5,000 liters with the same mixing action, even when using traditional mixing impellers.

This offers a simpler alternative to difficult-to-manage single use bags and tank liners commonly used in the industry. However, don’t let its simplicity fool you – this is no cheap, flimsy mixer. Our engineered lab mixer and tank systems meet high industry standards, and offer mixing impellers which can scale up or down. This means our single use mixers can be used for either pilot plant or production mixing processes, and other applications.

You’ll also be glad to know that like other WMProcess products, our Poly USP VI Mixing tank may be customized to suit your specific application. Choose to include tank baffles or not; order TC fittings welded to suit, and choose between other features such as dip tubes, vent filters and outlet valves, to be included if needed.

Contact White Mountain Process to discuss your project and intended applications. We can help you design a system unique to your needs, or a mixer flexible enough to mix a variety of media for nearly any imaginable application.

sanitary carboy mixer

Who We've Worked With